PODSTAWY FIZYKI PÓŁPRZEWODNIKÓW

Półprzewodnikami nazywamy materiały, które w temperaturze zera bezwzględnego mają całkowicie obsadzone pasmo walencyjne i całkowicie puste pasmo przewodnictwa, a szerokość pasma zabronionego nie przekracza 3 eV.

Pod wpływem wzbudzeń termicznych część elektronów uzyskuje wystarczającą energię do pokonania przerwy energetycznej i przechodzi do pasma przewodnictwa, gdzie stają się swobodnymi nośnikami prądu. Jednocześnie w paśmie walencyjnym powstają dziury.

W półprzewodnikach występują dwa rodzaje nośników: elektrony i dziury, stąd przy przepływie prądu mówimy o przewodnictwie elektronowym i dziurowym.

Konduktywność półprzewodników zmienia się w przedziale od 10⁻⁸ do 10⁶ (Ω cm)⁻¹.

Wartość *E_g* wzrasta w każdym okresie przy przejściu do pierwiastka o większej liczbie atomowej *Z*. Maleje natomiast w każdej grupie przy przejściu do pierwiastków o większym *Z*. Jest to uwarunkowane strukturą zewnętrznych powłok elektronowych atomów.

Przechodząc w danej grupie z góry na dół spotykamy atomy, które mają wypełnione powłoki o większej wartości głównej liczby kwantowej *n*. Jednocześnie ze wzrostem *n* występuje większe oddziaływanie sąsiednich atomów, co w efekcie daje szerokie pasmo powstałe z rozszczepienia takiego poziomu. Odpowiada to mniejszej przerwie energetycznej.

Grupa ⇒ Okres ↓	Π	III	IV	V	VI	VII
II		B 1.1	C 5.2			
			Si	P 15	S 25	
IV			Ge	As	Se 2.5	
			0.7	1.2	1.7	
V			Sn 0.08	Sb 0.12	Te 0.36	J 1.25
VI						

Rys. 17.1. Rozmieszczenie półprzewodników w układzie okresowym pierwiastków. Obok symbolu pierwiastka podano wartość przerwy energetycznej w eV.

Tabela 17.1Wartości szerokości przerw energetycznychniektórych półprzewodników

Półprzewodnik	E _g w 300 K (eV)				
Pierwiastki					
Si	1.12				
Ge	0.67				
Diament	5.30				
α-Sn	0.08				
Zw	iązki A [⊞] B [∨]				
GaAs	1.35				
GaP	2.24				
InAs	0.36				
InSb	0.18				
GaN	3.39				
Związki A ^{II} B ^{VI}					
CdS	2.42				
CdSe	1.73				
CdTe	1.50				
ZnTe	2.25				

Największe znaczenie jako materiał półprzewodnikowy ma krzem.

Półprzewodnikami są także liczne związki chemiczne

- grupa $A^{III}B^{V}$; np. GaAs, GaP,
- grupa $A^{II}B^{VI}$: CdS, ZnO,
- kryształy mieszane: np. Ge_xSi_{1-x} czy Hg_{1-x}Cd_xTe (x - skład molowy).

Do półprzewodników należą także liczne związki organiczne.

Ze względu na właściwości fizyczne półprzewodniki dzieli się na samoistne i domieszkowane.

17.1. Półprzewodniki samoistne

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego. Stąd koncentracje elektronów i dziur są jednakowe i równe koncentracji samoistnej *n_i*

$$n = p = n_i \tag{17.1}$$

Idealny półprzewodnik samoistny charakteryzuje się doskonałą strukturą sieci krystalicznej, nie zawiera więc obcych atomów (zanieczyszczeń i domieszek) ani też innych defektów strukturalnych.

Dla większości półprzewodników koncentracja elektronów przewodnictwa jest mała w porównaniu z liczbą stanów w paśmie przewodnictwa i dlatego funkcja rozkładu Fermiego-Diraca *f(E)* [zob. wzór (15.28)] jest znacznie mniejsza od jedności. Możemy wówczas zapisać dla elektronów

$$f_{e}(E) = \frac{1}{exp\left[\frac{E - E_{F}}{kT}\right] + 1} \approx exp\left(-\frac{E - E_{F}}{kT}\right)$$
(17.2)

Funkcja rozkładu Fermiego-Diraca została zastąpiona przez funkcję rozkładu Boltzmana co oznacza, że **gaz elektronowy w półprzewodnikach jest gazem niezwyrodniałym**. Warunek (17.2) będzie spełniony tylko wówczas, jeżeli ($E - E_F$) jest znacznie większe od kT.

Rys. 17.2. Schematyczne przedstawienie modelu półprzewodnika samoistnego. Pasmo walencyjne i pasmo przewodnictwa w 0 K (a) i T > 0 (b). Funkcje gęstości stanów (c), funkcje rozkładu (d) oraz koncentracja nośników (e).

Koncentracja elektronów w przedziale energii od *E* do *E*+*dE* dana jest zależnością (zob. pkt 15.5.2)

$$dn = g_e(E)f_e(E)dE \tag{17.3}$$

gdzie $g_e(E)$ jest gęstością stanów dla elektronów.

Całkowitą liczbę elektronów w jednostce objętości otrzymamy całkując wyrażenie (17.3) po całej szerokości pasma przewodnictwa

$$n = \frac{4\pi \left(2m_e^*\right)^{1/2}}{h^3} \int_{E_c}^{\infty} (E - E_c)^{1/2} \exp\left(-\frac{E - E_F}{kT}\right) dE$$
(17.4)

gdzie m_e^* jest masą efektywną elektronu. Podstawiając $x = [(E - E_c)/kT]^{1/2}$, całkę (17.4) można sprowadzić do całki

$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Wykonując proste przekształcenia otrzymujemy

$$n = \frac{2}{h^3} \left(2\pi m_e^* kT \right)^{3/2} \exp\left(-\frac{E_c - E_F}{kT} \right) = N_c \exp\left(-\frac{E_c - E_F}{kT} \right)$$
(17.5)

Wielkość

$$N_{c} = \frac{2}{h^{3}} \left(2\pi m_{e}^{*} kT \right)^{3/2}$$
(17.6)

nazywamy efektywną gęstością stanów w paśmie przewodnictwa.

Podstawiając stałe występujące we wzorze (17.6) mamy:

$$N_{c} = \frac{2}{h^{3}} (2\pi mk)^{3/2} \left(\frac{m_{e}^{*}}{m}\right)^{3/2} T^{3/2} = 4.81 \times 10^{21} \left(\frac{m_{e}^{*}}{m}\right)^{3/2} T^{3/2}$$
(17.7)

gdzie *m* oznacza masę elektronu swobodnego, a N_c jest wyrażone w m⁻³.

Funkcja rozkładu dla dziur $f_h(E)$ wyraża się wzorem

$$f_{h}(E) = 1 - f_{e}(E) = \frac{1}{exp\left[\frac{(E_{F} - E)}{kT}\right] + 1}$$
(17.8)

Podobnie jak w przypadku elektronów

$$f_h(E) = \frac{1}{exp\left[\frac{(E_F - E)}{kT}\right] + 1} = exp\left(-\frac{E_F - E}{kT}\right)$$
(17.9)

otrzymujemy wyrażenie na koncentrację dziur w paśmie walencyjnym

$$p = \int_{-\infty}^{0} g_h(E) f_h(E) dE = \frac{4\pi \left(2m_h^*\right)^{3/2}}{h^3} \int_{-\infty}^{0} (-E)^{1/2} \exp\left(-\frac{E_F - E}{kT}\right) dE$$
(17.10)

gdzie m_h^* jest masą efektywną dziury.

Od wierzchołka pasma walencyjnego w dół, energia przyjmuje wartości ujemne (rys. 17.2). Postępując podobnie jak przy wyprowadzeniu wyrażenia (17.5), otrzymujemy:

$$p = \frac{2}{h^3} \left(2\pi m_h^* kT \right)^{3/2} e^{-E_F/kT} = N_v \exp\left(-\frac{E_F}{kT}\right)$$
(17.11)

Wielkość N_v jest efektywną gęstością stanów w paśmie walencyjnym. Liczbowo N_v wynosi

$$N_{v} = \frac{2}{h^{3}} \left(2\pi mk\right)^{3/2} \left(\frac{m_{h}^{*}}{m}\right)^{3/2} T^{3/2} = 4.81 \times 10^{21} \left(\frac{m_{h}^{*}}{m}\right)^{3/2} T^{3/2} \qquad [m^{-3}] \qquad (17.12)$$

Mnożąc przez siebie wyrażenia na koncentrację elektronów (17.5) i dziur (17.11) mamy

$$np = N_v N_c \exp\left(-\frac{E_c}{kT}\right)$$

Ponieważ $E_c = E_q$

$$np = N_v N_c \exp\left(-\frac{E_g}{kT}\right)$$
(17.13)

lloczyn *np* jest taki sam dla półprzewodnika samoistnego jak i domieszkowanego. Ponieważ dla półprzewodnika samoistnego $n = p = n_i$, więc z wzoru (17.13) otrzymujemy ostatecznie wyrażenie na koncentrację nośników w półprzewodniku samoistnym

$$n_{i} = \frac{2(2\pi kT)^{3/2}}{h^{3}} \left(m_{e}^{*}m_{h}^{*}\right)^{3/4} \exp\left(-\frac{E_{g}}{2kT}\right)$$
(17.14)

W temperaturze pokojowej koncentracja nośników jest bardzo mała w porównaniu z koncentracją atomów. Np., w krzemie w T = 300 K na jeden swobodny nośnik przypada 3×10¹² atomów. Dla porównania, w metalach koncentracje swobodnych elektronów i koncentracje atomów są porównywalne.

Tabela 17.2. Podstawowe parametry niektórych półprzewodników w T = 300 K

Parametr	Si	Ge	GaAs	InSb
Koncentracja atomów lub molekuł [m ⁻³]	5×10 ²⁸	4.4×10 ²⁸	2.2×10 ²⁸	
Stała sieci krystalicznej [nm]	0.543	0.566	0.565	0.648
Gęstość [kg/m³]	2330	5320	5320	5775
Temperatura topnienia [°C]	1420	957	1238	530
Szerokość przerwy energetycznej [eV]	1.1	0.7	1.4	0.18
Efektywna gęstość stanów:				
$N_c [{ m m}^{-3}]$	2.8×10 ²⁵	1.0×10 ²⁵	4.7×10 ²³	
$N_{v} \{ m^{-3} \}$	1.0×10 ²⁵	6.0×10 ²⁴	7.0×10 ²⁴	
Koncentracja samoistna [m ⁻³]	1.45×10 ¹⁶	2.4×10 ¹⁹	10 ²³	1.9×10 ²²
Ruchliwość nośników półprzewodnika samoistnego [m²/Vs]:				
elektronów	0.13	0.39	0.86	8.0
dziur	0.05	0.19	0.025	0.08
Względna przenikalność dielektryczna	11.7	16	12	12

Tabela 17.3. Zależność koncentracji samoistnej od temperatury

<i>T</i> [K]	<i>n</i> _i [m ⁻³]				
	Si	Ge	GaAs		
200	6.1×10 ¹⁰	5.5×10 ¹⁶	10 ⁶		
300	1.5×10 ¹⁶	2.4×10 ¹⁹	10 ¹³		
500	9.2×10 ¹⁹	7.7×10 ²¹	6.1×10 ¹⁷		
700	1.0×10 ²²	2.7×10 ²³	1.7×10 ²⁰		

Z porównania wzorów (17.5) i (17.11) możemy obliczyć położenie poziomu Fermiego

$$E_F = \frac{E_g}{2} + \frac{3}{4} kT \ln \frac{m_h^*}{m_e^*}$$
(17.15)

W temperaturze 0 K poziom Fermiego przypada dokładnie w środku przerwy energetycznej i nie zmienia się ze zmianą temperatury, o ile $m_e^* = m_h^*$. Jeżeli natomiast masy efektywne są różne, to poziom Fermiego przesuwa się przy wzroście temperatury w kierunku pasma, któremu odpowiada mniejsza masa efektywna.

17.2. Półprzewodniki domieszkowe

Jeżeli pięciowartościowy atom As zastąpi w sieci atom Ge, to cztery z pięciu elektronów walencyjnych biorą udział w wiązaniu (rys. 17.3). Pozostały piąty elektron nie uczestniczy w wiązaniu i jest związany z dodatnim polem domieszki siłami kulombowskimi. Siły te są jednak bardzo osłabione wpływem przenikalności dielektrycznej ε (dla Ge ε = 16 i E_j jest 256 razy mniejsza niż E_j atomu swobodnego i wynosi setne części elektronowolta).

Rys. 17.3. Półprzewodnik typu n. Część atomów Ge zostaje zastąpiona przez pięciowartościowe atomy domieszki As: (a) w 0 K atom domieszki jest niezjonizowany, piąty elektron nie biorący udziału w wiązaniu ma energię wiązania wynoszącą setne części elektronowolta, a promień odbity - kilkadziesiąt Å; (b) w T > 0K następuje jonizacja atomów domieszki i powstanie swobodnych elektronów, (c) położenie poziomu donorowego E_d .

Większe wartości energii jonizacji domieszek w krzemie są uwarunkowane mniejszą wartością przenikliwości dielektrycznej (ε = 11.7). Pewien wpływ na energię jonizacji mają również wartości mas efektywnych.

Tabela 17.4. Energia jonizacji domieszek pięciowartościowych w Si i Ge

Domieszka	<i>E</i> ; [eV]		
	Si Ge		
Р	0.044	0.012	
As	0.049	0.0127	
Sb	0.039	0.0096	

Tabela 17.5. Energia jonizacji domieszek trójwartościowych w Si i Ge

Domieszka	E_a [eV]		
	Si Ge		
В	0.045	0.0104	
AI	0.057	0.0102	
Ga	0.065	0.0108	

Kiedy w sieci germanu znajduje się atom trójwartościowy, np. ind (rys. 17.4), jedno z wiązań pozostaje niewysycone, gdyż atom taki ma o jeden elektron mniej niż atom germanu. Wiązanie to może być uzupełnione dowolnym elektronem z innego germanu. Przejście takie wymaga bardzo małej ilości energii.

Rys. 17.4. Półprzewodnik typu p. Część atomów germanu zostaje zastąpiona przez trójwartościowe atomy domieszki In: (a) w temperaturze 0 K atom domieszki ma czwarte wiązanie niewysycone; (b) w temperaturze T > 0 K następuje wysycenie wiązania atomu domieszki i jednoczesne pojawienie się dziury; (c) położenie poziomu akceptorowego E_a .

Elektron, który wysyca wiązanie w atomie domieszki, zostawia jednocześnie dziurę w tym węźle. Miejsce to może zająć nowy elektron. W rezultacie takich procesów, dziura będzie przesuwać się w kierunku przeciwnym względem ruchu elektronu. W ujęciu struktury pasmowej oznacza to pojawienie się dziury w paśmie walencyjnym. Jednocześnie elektrony związane z atomami domieszki tracą możliwość przemieszczania się. Domieszki tego typu nazywamy akceptorowymi, a wnoszone poziomy – poziomami akceptorowymi.

Typowe wartości koncentracji domieszek wynoszą 10²²–10²⁵ m⁻³.

Niektóre domieszki w półprzewodnikach powodują powstawanie poziomów domieszkowych położonych daleko od granicy pasm energetycznych. Poziomy takie noszą nazwę głębokich.

Rys. 17.5 Poziomy domieszkowe w germanie

17.4. Ruchliwość nośników w półprzewodnikach

Ruchliwość nośników μ definiujemy jako stosunek prędkości unoszenia (dryfu) v_d do natężenia zewnętrznego pola elektrycznego *E*

$$u = \frac{V_d}{E} \tag{17.42}$$

Elektrony doznają zderzeń z fononami i domieszkami sieci co powoduje ustalenie się pewnego stanu równowagi, który charakteryzuje się ustaloną prędkością unoszenia.

Można wykazać, że

$$\mu = \frac{e}{m} \frac{\langle I \rangle}{\langle v \rangle} \tag{17.53}$$

gdzie *m*, *<l>* i *<v>* oznaczają odpowiednio oznaczono masę, średnią drogę swobodną i średnią prędkość nośników.

Z prawa Ohma

$$\vec{j} = \sigma \vec{E}$$

Dla elektronów

$$\sigma_e = e n \mu_e \tag{17.51}$$

Podobnie dla dziur

$$\sigma_h = e \rho \mu_h \tag{17.52}$$

Wartość średniej drogi swobodnej uwarunkowana jest mechanizmami rozpraszania. W półprzewodnikach o szerszej przerwie energetycznej dominują dwa mechanizmy rozpraszania:

- rozpraszanie na fononach: odgrywa decydującą rolę w temperaturach powyżej 100–150 K, kiedy koncentracja fononów jest duża,
- rozpraszanie na zjonizowanych domieszkach dominuje w temperaturach niskich.

Dla rozpraszania na fononach

$$\mu \sim T^{-3/2} \tag{17.57}$$

Dla rozpraszania na domieszkach

$$\mu \sim T^{3/2} \tag{17.58}$$

W półprzewodnikach niezwyrodniałych ze wzrostem temperatury ruchliwość wzrasta proporcjonalnie do $T^{3/2}$, następnie przechodzi przez maksimum i zmniejsza się proporcjonalnie do $T^{-3/2}$.

Rys. 17.10. Teoretyczna zależność ruchliwości nośników od temperatury w półprzewodniku domieszkowym.

Rys. 17.11. Zależność ruchliwości elektronów od temperatury w germanie przy różnych koncentracjach domieszki donorowej.

Ze wzrostem koncentracji domieszek ruchliwość nośników maleje, a maksimum ruchliwości przesuwa się w kierunku wyższych temperatur.

Rys. 17.12. Zależność prędkości dryfu elektronów (1) i dziur (2) w krzemie w zależności od natężenia pola elektrycznego.

Jeżeli natężenie pola jest duże, nośniki uzyskują prędkości unoszenia porównywalne z prędkościami w ruchu chaotycznym. Wzrost prędkości nośników powoduje, że częściej występują zderzenia z defektami sieci, co w efekcie prowadzi do zmniejszenia prędkości dryfu.

Tabela 17.3. Eksperymentalne wartości ruchliwości elektronów i dziur.

Półprzewodnik	$\mu_e ({ m m}^2/{ m Vs})$		μ_h (m ² /Vs)		n	
	77K	300K	77K	300K	elektrony	dziury
GaAs	2.10	0.85	0.42	0.04	1.0	2.1
Ge	3.71	0.38	4.37	0.18	1.6	2.3
InSb	120.00	7.80	1.00	0.07	1.6	2.1
Si	4.55	0.13	1.16	0.05	2.6	2.3

Ruchliwość elektronów jest na ogół większa niż ruchliwość dziur, co jest spowodowane głównie większą masą efektywną dziur.

17.5. Przewodnictwo elektryczne półprzewodników

Konduktywność wyraża się wzorem:

$$\sigma = |\mathbf{e}|(n\mu_{\mathbf{e}} + p\mu_{h}) \tag{17.59}$$

gdzie *n*, μ_e , *p*, μ_h są odpowiednio koncentracjami i ruchliwościami elektronów i dziur.

Półprzewodniki samoistne

W tym przypadku $n = p = n_i$ i konduktywność wynosi

$$\sigma = |\mathbf{e}| n_i (\mu_{\mathbf{e}} + \mu_h) \tag{17.60}$$

gdzie

$$n_{i} = \frac{2}{h^{3}} (2\pi kT)^{3/2} \left(m_{e}^{*} m_{n}^{*} \right)^{3/4} \exp \left(-\frac{E_{g}}{2kT} \right)$$

Ruchliwość nośników, z wyjątkiem temperatur bardzo niskich (<100K), jest w przybliżeniu proporcjonalna do $T^{-3/2}$. Dzięki temu zależność potęgowa od temperatury upraszcza się tak, że wzór (17.60) może być zapisany w postaci

$$\sigma = \sigma_o \exp\left(-\frac{E_g}{2kT}\right) \tag{17.61}$$

gdzie σ_o jest dla danego półprzewodnika wartością stałą.

Zależność (17.61) wygodnie jest przedstawić w skali półlogarytmicznej

(17.62)

Rys. 17.13. Zależność konduktywności od temperatury dla czystego germanu i krzemu.

Konduktywność półprzewodników bardzo szybko zmienia się z temperaturą, przy czym zmiany te są uwarunkowane zmianami koncentracji nośników. Jest to dość istotna różnica pomiędzy półprzewodnikami a metalami. W metalach koncentracja nośników jest stała, a temperaturowa zależność σ jest spowodowana tylko temperaturową zależnością ruchliwości nośników.

Konduktywnośc wybranych półprzewodników w 300 K

	InSb	PbS	Ge	Si
E_g [eV]	0.18	0.37	0.67	1.12
σ [Ωm] ⁻¹	2×10 ⁴	30	2.3	1.6×10 ⁻³

Półprzewodniki domieszkowe

Również w półprzewodnikach domieszkowych zależność konduktywności od temperatury jest uwarunkowana głównie zależnością koncentracji nośników od temperatury.

Temperatury niskie

Koncentracja nośników wzrasta z temperaturą zgodnie z zależnością (17.25)

$$n = \sqrt{\frac{N_d N_c}{2}} \exp\left(-\frac{E_j}{2kT}\right), \qquad N_c \sim T^{3/2}$$

Jednocześnie w tym obszarze temperatury dominuje rozpraszanie na domieszkach i ruchliwość $\mu \sim T^{3/2}$. Zaniedbując słabą zależność potęgową od temperatury

$$\sigma = \sigma_o \exp\left(-\frac{E_j}{2kT}\right)$$

lub

$$\ln\sigma = \ln\sigma_o - \frac{E_j}{2k}\frac{1}{T}$$

Na rys. 17.14(a) obszarowi temu odpowiada odcinek "ab". Nachylenie odcinka wynosi *Ej/2k*. W tym obszarze, konduktywność bardzo szybko wzrasta z temperaturą na skutek termicznej jonizacji domieszek i jest uwarunkowana tylko nośnikami większościowymi.

Rys. 17.14. (a) Schematyczny przebieg zależności $\sigma = \sigma(T)$; (b) zależność $\sigma = \sigma(T)$ dla krzemu domieszkowanego fosforem.

<u>Temperatury umiarkowane (obszar nasycenia)</u>

Koncentracja nośników większościowych pozostaje praktycznie stała i równa koncentracji domieszki. Jednocześnie w tym obszarze temperatur o ruchliwości decyduje już właściwie rozproszenie na fononach i dlatego $\mu \sim T^{-3/2}$. Oznacza to, że konduktywność maleje ze wzrostem temperatury, choć zmiany te są stosunkowo niewielkie. Obszarowi temu na rys. 17.14(a) odpowiada odcinek "bc".

Temperatury wysokie

W temperaturach wysokich następuje jonizacja termiczna atomów materiału podstawowego, koncentracja nośników jest praktycznie taka jak w materiale samoistnym. Ruchliwość nośników maleje z temperaturą proporcjonalnie do $T^{-3/2}$. Zatem konduktancja

$$\sigma = \sigma_o \exp\left(-\frac{E_g}{2kT}\right)$$

Na rys. 17.14(a) odpowiada to odcinkowi "cd", tworzącemu z osią odciętych kąt α taki, że tg α = $E_g/2k$. Im większa jest koncentracja domieszek, tym ich całkowita jonizacja następuje w wyższej temperaturze, jednocześnie w wyższej temperaturze następuje przejście w obszar samoistny.

Dla półprzewodnika zwyrodniałego koncentracja nośników pozostaje stała, a temperaturowe zmiany konduktancji zależą tylko od zmian ruchliwości.

Na rys. 17.14(b) przedstawiono zależność σ od T dla krzemu domieszkowanego fosforem, przy różnych koncentracjach domieszki. Przebieg krzywych doświadczalnych potwierdza analizę teoretyczną.