SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0

Badanie rozkładu rzutu śnieżkami do celu

pomiary wykonano dnia jako ćwiczenie z obowiązujących
Karta obliczeń do zestawu danych nr
Zawarte w karcie obliczeń tabele w zwykłym układzie sprawozdania będą występowały w części 4.
Aby usprawnić proces liczenia najważniejsze do wykonania operacje zostały zebrane poniżej.

| n | X_i [cm] | Y_i [cm] | $|X_i - \bar{X}|$ [cm] | $|X_i - \bar{X}|^2$ [cm2] | $|Y_i - \bar{Y}|$ [cm] | $|Y_i - \bar{Y}|^2$ [cm2] | Y_i^2 | $X_i'^2$ | $(X_i)^2$ |
|-----|-----------|-----------|----------------|-----------------|----------------|----------------|---------|----------|---------|
| 1 | | | | | | | | | |
| 2 | | | | | | | | | |
| 3 | | | | | | | | | |
| 4 | | | | | | | | | |
| 5 | | | | | | | | | |

Sumy w kolumnach:

a) $\sum_{i=1}^{5} X_i = \ldots = \ldots \text{cm}$
b) $\sum_{i=1}^{5} Y_i = \ldots = \ldots \text{cm}$
c) $\sum_{i=1}^{5} (X_i - \bar{X})^2 = \ldots = \ldots \text{cm}^2$
d) $\sum_{i=1}^{5} (Y_i - \bar{Y})^2 = \ldots = \ldots \text{cm}^2$
e) $\sum_{i=1}^{5} Y_i^2 = \ldots = \ldots \text{cm}^2$
f) $\sum_{i=1}^{5} (X_i Y_i) = \ldots = \ldots \text{cm}^2$
g) $\sum_{i=1}^{5} (X_i)^2 = \ldots = \ldots \text{cm}^2$

$h) \bar{X} = \frac{1}{5} \left(\sum_{i=1}^{n} X_i \right) = \ldots = \ldots \text{cm}$

$k) \bar{Y} = \frac{1}{5} \left(\sum_{i=1}^{n} Y_i \right) = \ldots = \ldots \text{cm}$

$i) u(\bar{X}) = \sqrt{\frac{\sum_{i=1}^{5} (X_i - \bar{X})^2}{4 \cdot 5}} = \ldots = \ldots \text{cm}$

$l) u(\bar{Y}) = \sqrt{\frac{\sum_{i=1}^{5} (Y_i - \bar{Y})^2}{4 \cdot 5}} = \ldots = \ldots \text{cm}$

$m) a = \frac{\left\{ \sum_{i=1}^{5} X_i \right\} \left\{ \sum_{i=1}^{5} Y_i \right\} - \left\{ \sum_{i=1}^{5} X_i Y_i \right\}}{\left\{ \sum_{i=1}^{5} X_i^2 \right\} - 5 \cdot \left\{ \sum_{i=1}^{5} X_i \right\}^2} = \ldots \text{cm}^{-1}$

$n) b = \frac{\left\{ \sum_{i=1}^{5} X_i \right\} \left\{ \sum_{i=1}^{5} Y_i \right\} - \left\{ \sum_{i=1}^{5} Y_i \right\} \left\{ \sum_{i=1}^{5} X_i \right\}}{\left\{ \sum_{i=1}^{5} X_i^2 \right\} - 5 \cdot \left\{ \sum_{i=1}^{5} X_i \right\}^2} = \ldots \text{cm}^{-1}$
2.1 Cele ćwiczenia:

a) ustalenie czy celowano do środka elementu płotu,
b) ustalenie czy celowano do wycinka paraboli widocznego na elemencie płotu,
c) opanowanie umiejętności opracowania danych doświadczalnych.

2.2 Wielkości znane, mierzone i wyznaczane w ćwiczeniu

a) Wielkości znane:

b) wielkości mierzne:

metodą bezpośrednią mierzymy...

metodą pośrednią (różnicową, przez podstawienie, zerową mostkową, zerową kompensacyjną) mierzymy..............

c) niepewności wielkości wyznaczone będą metodą (typu A / B; standardową / standardową złożoną):

2.3 Inne informacje

Widok elementu płot bez trafień śnieżkami:

a) dwa kątowniki łączące narożniki płotu, tworzące krzyż ze środkiem w środku elementu płotu,
b) wycinek paraboli o równaniu \(y = x^2 \) (gdzie \(x \ [m] \)) z wierzchołkiem w dolnym lewym narożniku płotu, powstały z pomalowania płotu na dwa kolory.
Wykres Y(X) położenia śladów trafień śnieżkami w element płotu
Wykres wykonujemy na papierze milimetrowym nanosząc: a) punkty pomiarowe i ich niepewności maksymalne (krzyże); b) wartości średnie \bar{X} i \bar{Y} i ich niepewności rozszerzone (prostokąt) wyznaczone w części 4.
3. KARTA POMIARÓW DO ĆWICZENIA nr 0
Kolejność punktów na tej stronie została odwrócona by lepiej zrozumieć istotę ćwiczenia bez wprowadzenia teoretycznego.

3.3 Uwagi o warunkach wykonania pomiarów.
Na elemencie płotu widać:
a) dwa kątowniki łączące narożniki płotu, tworzące krzyż ze środkiem w środku elementu płotu,
b) wycinek paraboli o równaniu y=x^2 (gdzie x [m]) z wierzchołkiem w dolnym lewym narożniku płotu, powstały z pomalowania płotu na dwa kolory,
c) 5 śladów po trafieniach śnieżkami.
Wszystkie boki płotu zmierzono za pomocą stalowej miarki o długości 2 m wycechowanej w temperaturze 20 C. Uzyskano za każdym razem wynik 1,5 m. Przyjęto, że płot ma kształt kwadratu.
Odczytano temperaturę -5 C za pomocą termometru zaokrąglonego.
Wprowadzono kartezjański układ współrzędnych OXY z początkiem w dolnym lewym rogu płotu.

3.2 Pomiary i uwagi do nich.
Niniejszy zróżnicowany zestaw danych został przygotowany dla grupy liczącej maksymalnie 36 osób.
W zamieszczonych poniżej tabelach każda z osób ćwiczących musi odnaleźć swój numer na liście grupy.
Kolumny z kolejnych tabel zawierają informacje na temat współrzędnych punktów trafienia śnieżkami w element płotu (X, Y) wyrażone w centymetrach. Kolumny właściwe dla osoby ćwiczącej należy przepisać do Karty obliczeń.

3.1 Parametry
Ponadto, do dalszego stosowania, przyjęto poniższe wartości:
- maksymalną niepewność pomiarową $\Delta X = 1$ cm
- maksymalną niepewność pomiarową $\Delta Y = 1$ cm

<table>
<thead>
<tr>
<th>nr</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>15</td>
<td>52</td>
<td>15</td>
<td>90</td>
<td>15</td>
<td>143</td>
<td>13</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>22</td>
<td>63</td>
<td>20</td>
<td>104</td>
<td>20</td>
<td>133</td>
<td>25</td>
<td>93</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>32</td>
<td>71</td>
<td>32</td>
<td>112</td>
<td>30</td>
<td>120</td>
<td>35</td>
<td>84</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>42</td>
<td>84</td>
<td>44</td>
<td>125</td>
<td>42</td>
<td>115</td>
<td>43</td>
<td>72</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>54</td>
<td>93</td>
<td>53</td>
<td>135</td>
<td>53</td>
<td>101</td>
<td>53</td>
<td>63</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nr</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>10</td>
<td>53</td>
<td>53</td>
<td>50</td>
<td>91</td>
<td>51</td>
<td>144</td>
<td>50</td>
<td>100</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>100</td>
<td>62</td>
<td>133</td>
<td>61</td>
<td>94</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>70</td>
<td>73</td>
<td>72</td>
<td>110</td>
<td>73</td>
<td>123</td>
<td>71</td>
<td>82</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>81</td>
<td>85</td>
<td>84</td>
<td>125</td>
<td>85</td>
<td>115</td>
<td>80</td>
<td>72</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>95</td>
<td>93</td>
<td>91</td>
<td>133</td>
<td>93</td>
<td>104</td>
<td>90</td>
<td>63</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nr</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>11</td>
<td>94</td>
<td>53</td>
<td>90</td>
<td>94</td>
<td>92</td>
<td>143</td>
<td>91</td>
<td>101</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>100</td>
<td>60</td>
<td>104</td>
<td>102</td>
<td>100</td>
<td>131</td>
<td>102</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>113</td>
<td>71</td>
<td>111</td>
<td>113</td>
<td>114</td>
<td>122</td>
<td>110</td>
<td>84</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>122</td>
<td>84</td>
<td>124</td>
<td>122</td>
<td>124</td>
<td>112</td>
<td>124</td>
<td>73</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>134</td>
<td>93</td>
<td>134</td>
<td>133</td>
<td>133</td>
<td>101</td>
<td>135</td>
<td>65</td>
<td>133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nr</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>11</td>
<td>94</td>
<td>53</td>
<td>90</td>
<td>94</td>
<td>92</td>
<td>143</td>
<td>91</td>
<td>101</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>100</td>
<td>60</td>
<td>104</td>
<td>102</td>
<td>100</td>
<td>131</td>
<td>102</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>113</td>
<td>71</td>
<td>111</td>
<td>113</td>
<td>114</td>
<td>122</td>
<td>110</td>
<td>84</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>122</td>
<td>84</td>
<td>124</td>
<td>122</td>
<td>124</td>
<td>112</td>
<td>124</td>
<td>73</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>134</td>
<td>93</td>
<td>134</td>
<td>133</td>
<td>133</td>
<td>101</td>
<td>135</td>
<td>65</td>
<td>133</td>
</tr>
</tbody>
</table>

3.1 Parametry
Ponadto, do dalszego stosowania, przyjęto poniższe wartości:
- maksymalną niepewność pomiarową $\Delta X = 1$ cm
- maksymalną niepewność pomiarową $\Delta Y = 1$ cm

dr inż. Konrad Zubko, 30.11.2015
Wykres \(Y'(X') \) położenia śladów trafień śnieżkami w element płotu

Wykres we współrzędnych \(X' = X, \ Y' = \sqrt{Y} \) wykonujemy na papierze milimetrowym nanosząc: a) punkty pomiarowe bez niepewności; b) prostą wyznaczoną metodą aproksymacji liniowej z podaniem jej równania wyznaczonego w części 4.
4. OPRACOWANIE ĆWICZENIA nr 0
W większości punktów korzystamy z wartości wyznaczonych w Karcie obliczeń.

4.1 Obliczenia do ustalenia, czy celem rzutu był środek płotu
4.1.1 Wartość teoretyczna wielkości \(X \) \(X_{\text{teoret}} = \ldots \text{cm} \)

4.1.2 Wartość średnia wielkości \(X \) \(\bar{X} = \ldots \text{cm} \)

4.1.3 Wartość niepewności standardowej wielkości \(\bar{X} \) \(u(\bar{X}) = \ldots \text{cm} \)

4.1.4 Wartość niepewności standardowej złożonej wielkości \(\bar{X} \) \(u_c(\bar{X}) = \ldots \text{cm} \)

4.1.5 Wartość niepewności względnej wielkości \(\bar{X} \) \(u_{c,r}(\bar{X}) = \frac{u_c(\bar{X})}{\bar{X}} = \ldots \)

4.1.6 Wartość niepewności rozszerzonej wielkości \(\bar{X} \) \(U(\bar{X}) = 2 \cdot u_c(\bar{X}) = \ldots \text{cm} \)

4.1.7 Wyniki są skupione wokół wartości średniej jeżeli poniższa relacja jest prawdziwa (podstawić wartości)
\[|X_{\text{max}} - X_{\text{min}}| < U(\bar{X}) \]

4.1.8 Wyniki są skupione wokół wartości teoretycznej jeżeli poniższa relacja jest prawdziwa (podstawić wartości)
\[|\bar{X} - X_{\text{teoret}}| < U(\bar{X}) \]

4.1.11 Wartość teoretyczna wielkości \(Y \) \(Y_{\text{teoret}} = \ldots \text{cm} \)

4.1.12 Wartość średnia wielkości \(Y \) \(\bar{Y} = \ldots \text{cm} \)

4.1.13 Wartość niepewności standardowej wielkości \(\bar{Y} \) \(u(\bar{Y}) = \ldots \text{cm} \)

4.1.14 Wartość niepewności standardowej złożonej wielkości \(\bar{Y} \) \(u_c(\bar{Y}) = \ldots \text{cm} \)

4.1.15 Wartość niepewności względnej wielkości \(\bar{Y} \) \(u_{c,r}(\bar{Y}) = \frac{u_c(\bar{Y})}{\bar{Y}} = \ldots \)

4.1.16 Wartość niepewności rozszerzonej wielkości \(\bar{Y} \) \(U(\bar{Y}) = 2 \cdot u_c(\bar{Y}) = \ldots \text{cm} \)

4.1.17 Wyniki są skupione wokół wartości średniej jeżeli poniższa relacja jest prawdziwa (podstawić wartości)
\[|Y_{\text{max}} - Y_{\text{min}}| < U(\bar{Y}) \]

4.1.18 Wyniki są skupione wokół wartości teoretycznej jeżeli poniższa relacja jest prawdziwa (podstawić wartości)
\[|\bar{Y} - Y_{\text{teoret}}| < U(\bar{Y}) \]
4.2 Obliczenia do ustalenia, czy celem rzutu był wycinek paraboli

4.2.1 Wyznaczenie metodą aproksymacji liniowej Gaussa parametrów prostej y = ax + b w układzie Y'(X'):

a) wartość średnia współczynnika kierunkowego a
\[\bar{a} = \ldots \ldots \cdot \text{cm}^{-1/2} \]

b) wartość wyrazu wolnego b
\[\bar{b} = \ldots \ldots \cdot \text{cm}^{1/2} \]

c) Tak wyznaczoną prostą należy nanieść na wykres na wykresie Y'(X') z podaniem jej równania.

d) Określenie wartości teoretycznych współczynników a_{teoret} = \ldots \ldots [\ldots \ldots], b_{teoret} = \ldots \ldots [\ldots \ldots]

Jeżeli realizujemy ćwiczenie w trakcie zajęć laboratoryjnych nie wykonujemy obliczeń z punktów 4.2.2 - 4.2.4 oraz nie poddajemy ich analizie. Realizując poniższe punkty należy przeprowadzić rachunek jednostek wyznaczanych wielkości.

4.2.2 Dodatkowe obliczenia do metody aproksymacji liniowej Gaussa:

a) wartość niepewności współczynnika kierunkowego a
\[\sigma_a = \sqrt{\frac{1}{5-2} \left(\frac{\sum_{i=1}^{5} Y_i^2}{5} - \bar{a} \left(\frac{\sum_{i=1}^{5} X_i Y_i}{5} \right) \right)^2} = \frac{1,666}{5} \left(\ldots \ldots \right)^2 \]

b) wartość niepewności wyrazu wolnego b
\[\sigma_b = \frac{\sum_{i=1}^{5} X_i^2}{5} = \ldots \ldots \cdot \left(\ldots \ldots \right) \]

c) wartość współczynnika R^2 (do wpisania na wykresie Y'(X'))
\[R^2 = \frac{\sum_{i=1}^{5} (X_i - \bar{X})(Y_i - \bar{Y})^2}{\sum_{i=1}^{5} (X_i - \bar{X})^2 \cdot \sum_{i=1}^{5} (Y_i - \bar{Y})^2} = \ldots \ldots [\ldots \ldots] \]

4.2.3 Wyniki są skupione wokół teoretycznej jeżeli poniższa relacja jest prawdziwa (podstawić wartości)
\[|\bar{a} - a_{teoret}| < U'(|\bar{a}|) \]

4.2.4 Wyniki są skupione wokół teoretycznej jeżeli poniższa relacja jest prawdziwa (podstawić wartości)
\[|\bar{b} - b_{teoret}| < U'(|\bar{b}|) \]
5. PODSUMOWANIE ĆWICZENIA nr 0

5.1 Zestawienie zaokrąglonych wartości wyznaczonych wielkości:

<table>
<thead>
<tr>
<th>Parametr X</th>
<th>Parametr Y</th>
<th>Parametr a prostej</th>
<th>Parametr b prostej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość średnia</td>
<td>(\bar{X} =)</td>
<td>(\bar{Y} =)</td>
<td>(\bar{a} =)</td>
</tr>
<tr>
<td>Niepewność standardowa</td>
<td>(u_c(\bar{X}) =)</td>
<td>(u_c(\bar{Y}) =)</td>
<td>(u_c(\bar{a}) =)</td>
</tr>
<tr>
<td>Niepewność względna</td>
<td>(u_{cr}(\bar{X}) =)</td>
<td>(u_{cr}(\bar{Y}) =)</td>
<td>(u_{cr}(\bar{a}) =)</td>
</tr>
<tr>
<td>Niepewność rozszerzona</td>
<td>(U(\bar{X}) =)</td>
<td>(U(\bar{Y}) =)</td>
<td>(U(\bar{a}) =)</td>
</tr>
<tr>
<td>Wartość teoretyczna</td>
<td>(X_{\text{teoret}} =)</td>
<td>(Y_{\text{teoret}} =)</td>
<td>(a_{\text{teoret}} =)</td>
</tr>
</tbody>
</table>

Zestaw danych nr

5.2 Analiza rezultatów:

5.2.a.1 Który z parametrów (ilość powtórzeń czy niepewność pomiarowa wielkość X) miał większy wpływ na niepewność złożoną \(u_c(\bar{X}) \) wyznaczenia składowej X punktu celowania?

5.2.a.2 Który z parametrów (ilość powtórzeń czy niepewność pomiarowa wielkość Y) miał większy wpływ na niepewność złożoną \(u_c(\bar{Y}) \) wyznaczenia składowej Y punktu celowania?

5.2.a.3 Który z parametrów (niepewność złożona wielkości X albo Y) miała większy wpływ na niepewność wyznaczenia położenia punktu celowania?

5.2.b.1 Czy niepewności względne \(u_{cr}(\bar{X}), u_{cr}(\bar{Y}) \) są duże czy małe (granicą umowną jest wartość 0,1)? Wyciągnąć wnioski na temat występowania błędów grubych, systematycznych i przypadkowych.

5.2.c.1 Czy w punktach 4.1.7, 4.1.17 spełnione są relacje świadczące o skupieniu wyników wokół wartości średniej? Wyciągnąć wnioski o występowaniu błędów grubych, systematycznych i przypadkowych.

5.2.c.2 Czy w punktach 4.1.8, 4.1.18 spełnione są relacje świadczące o skupieniu wyników wokół wartości teoretycznej? Wyciągnąć wnioski o występowaniu błędów grubych, systematycznych i przypadkowych.
5.2.c.3 Czy w punkcie 4.2.3 spełnione są relacje świadczące o skupieniu wyników wokół teoretycznej wartości współczynnika kierunkowego prostej? Wyciągnąć wnioski o występowaniu błędów grubych, systematycznych i przypadkowych.

5.2.c.4 Czy w punkcie 4.2.4 spełnione są relacje świadczące o skupieniu wyników wokół teoretycznej wartości wyrazu wolnego prostej? Wyciągnąć wnioski o występowaniu błędów grubych, systematycznych i przypadkowych.

5.2.d.1 Na bazie wykresu Y(X) wyciągnąć wnioski na temat celowania: a) w środek elementu płotu, b) do linii będącej wycinkiem paraboli oraz występowania w tym przypadku błędów grubych, systematycznych i przypadkowych:

5.2.d.2 Na bazie wykresu Y'(X') wyciągnąć wnioski na temat celowania do linii będącej wycinkiem paraboli oraz występowania w tym przypadku błędów grubych, systematycznych i przypadkowych:

5.2.d.3 Na bazie wartości współczynnika R^2 z punktu 4.2.4.c) wyciągnąć wnioski na temat celowania do linii będącej wycinkiem paraboli oraz występowania w tym przypadku błędów grubych, systematycznych i przypadkowych.
5.3 Synteza rezultatów:

5.3.1 Czy otrzymane rezultaty wskazują na celowanie śnieżkami w środek płotu, czy w wycinek paraboli widoczny na płocie? Co miało największy wpływ na niepewność wyznaczonych wielkości?

...
...
...
...
...
...
...
...

5.3.2 Podać, czy w przyjętym modelu celowania (środek elementu płotu / wycinek paraboli) wystąpiły błędy grube, systematyczne i przypadkowe (gdzie są widoczne, jaki mogą być ich przyczyny)?

...
...
...
...
...
...
...
...
...
...

5.3.3 Cele ćwiczenia a), b), c) zostały lub nie zostały osiągnięte ponieważ:

a) ..
...
...
...
...
...

b) ..
...
...
...
...
...

c) ...
...
...
...
...
...